INTROUCTION
In this fast moving world time delay is one of the most dreaded situations in the field of data communication. A delay in the communication is as bad as loosing the information, whether it is on the internet or on television or talking over a telephone. We need to find out different ways to improve the communication speed. The various methods adopted by the communication industry are the wireless technology, optical communications, ultra wide band communication networks etc. But all these methods need an initial capital amount which makes all these methods cost ineffective. So improving the existing network is very important especially in a country like INDIA.
The communication systems mainly consist of a transeiver and a channel. The tranceiver is the core of all data communications. It has a very vast variety of electronic components mostly integrated into different forms of IC chips. These ICs provide the various signal modifications like amplification, modulation etc. The delay caused in these circuits will definitely affect the speed of data communication.
This is where this topic LOW-k DIELCTRICS becomes relevant. It is one of the most recent developments in the field of integrated electronics. Mostly the IC s are manufactured using the CMOS technology. This technology has an embedded coupling capacitance that reduces the speed of operation. There are many other logics available like the RTL,DTL,ECL,TTL etc . But all these other logics have higher power consumption than the CMOS technology. So the industry prefer CMOS over other logics .
Inside the IC there are lots of interconnections between points in the CMOS substrate. These refer to the connection between the different transistors in the IC. For example , in the case of NAND LOGICS there are lots of connections between the transistors and their feedbacks. These connections are made by the INTERCONNECT inside the IC . Aluminum has been the material of choice for the circuit lines used to connect transistors and other chip components. These thin aluminum lines must be isolated from each other with an insulating material, usually silicon dioxide (SiO2).
This basic circuit construction technique has worked well through the many generations of computer chip advances predicted by Moore's Law1. However, as aluminum circuit lines approach 0.18 mm in width, the limiting factor in computer processor speed shifts from the transistors' gate delay to interconnect delay caused by the aluminum lines and the SiO2 insulation material. With the introduction of copper lines, part of the "speed limit" has been removed. However, the properties of the dielectric material between the layers and lines must now be addressed. Although integration of low-k will occur at the 0.13mm technology node, industry opinion is that the 0.10mm generation, set for commercialization in 2003 or 2004, will be the true proving ground for low-k dielectrics because the whole industry will need to use low-k at that line width.